关于Block的使用,现在很多人都说他知道。但是知道怎么用与懂为什么这么用,可能会出现哪些问题还是区别很大的。 光说没用,先把这个题做一下试试看。如果说全做对,可能我接下来要说的大部分都可以直接跳过啦。

Block 实现原理分析

引自:Block的引用循环问题 (ARC & non-ARC)

由于Objective-C是C语言的超集,既然OC中的NSObject对象其实是由C语言的struct+isa指针实现的,那么Block的内部实现估计也一样,以下三篇Blog对Block的实现机制做了详细研究:

A look inside blocks: Episode 1
A look inside blocks: Episode 2
A look inside blocks: Episode 3

虽然实现细节看着头痛,不过发现Block果然是和OC中的NSObject类似,也是用struct实现出来的东西。这个是LLVM项目compiler-rt分析的block头文Block_private.h头文件中关于Block的struct声明:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
struct Block_descriptor {
    unsigned long int reserved;
    unsigned long int size;
    void (*copy)(void *dst, void *src);
    void (*dispose)(void *);
};

struct Block_layout {
    void *isa;
    int flags;
    int reserved;
    void (*invoke)(void *, ...);
    struct Block_descriptor *descriptor;
    /* Imported variables. */
};

我们发现Block_layout中也有一个isa指针,像极了NSobject内部实现struct中的isa指针。这里的isa可能指向三种类型之一的Block:

_NSConcreteGlobalBlock:全局类型Block,在编译器就已经确定,直接放在代码段TEXT上。直接在NSLog中打印的类型为NSGlobalBlock
_NSConcreteStackBlock:位于栈上分配的Block,即
NSStackBlock
_NSConcreteMallocBlock:位于堆上分配的Block,即
NSMallocBlock__。

为什么会有这么多种类呢?首先来看全局类型Block,看例子:

1
2
3
4
5
6
7
8
9
10
11
12
void addBlock(NSMutableArray *array) {
  [array addObject:^{
    printf("global block\n");
  }];
}
 
void example() {
  NSMutableArray *array = [NSMutableArray array];
  addBlock(array);
  void (^block)() = [array objectAtIndex:0];
  block();
}

为什么addBlock中添加到array中的Block属于全局Block呢?因为它不需要运行时(Runtime)任何的状态来改变行为,不需要放在堆上或者栈上,直接编译后在代码段中即可,就像个c函数一样。这种类型的Block在ARC和non-ARC情况下没有差别。 这个Block访问了作用域外的变量d,在实现上就是这个block会多一个成员变量对应这个d,在赋值block时会将方法exmpale中的d变量值复制到成员变量中,从而实现访问。

1
2
3
4
5
6
7
void example() {
  int d = 5;
  void (^block)() = ^() {
      printf("%d\n", d);
  };
  block();
}

如果要修改d呢?:

1
2
3
4
5
6
7
8
9
void example() {
  int d = 5;
  void (^block)() = ^() {
      d++;
      printf("%d\n", d);
  };
  block();
  printf("%d\n", d);
}

由于局部变量d和这个block的实现不在同一作用域,仅仅在调用过程中用到了值传递,所以不能直接修改,而需要加一个标识符__block int d = 5;,那么block就可以实现对这个局部变量的修改了。如果是这种block标识的变量,在Block实现中不再是简单的一个成员变量,而是对应一个新的结构体表示这个block变量。block的本质是引入了一个新的Block_byref{$var_name}{$index}结构体,被block关键字修饰的变量就被放到这个结构体中。另外,block结构体通过引入Block_byref{$var_name}{$index}指针类型的成员,得以间接访问到Block的外部变量。这样对Block外的变量访问从值传递转变为引用,从而有了修改内容的能力。 正常我们使用Block是在栈上生成的,离开了栈作用域便释放了,如果copy一个Block,那么会将这个Block copy到堆上分配,这样就不再受栈的限制,可以随意使用啦。例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
typedef void (^TestBlock)();
 
TestBlock getBlock() {
  char e = 'E';
  void (^returnedBlock)() = ^{
    printf("%c\n", e);
  };
  return returnedBlock;
}
 
void example() {
  TestBlock block = getBlock();
  block();
}

函数getBlock中声明并赋值的returnedBlock,一开始是在栈上分配的,属于NSStackBlock,如果是non-ARC情况下return这个NSStackBlock,那么其实已经被销毁了,在函数中example()使用时就会crash。如果是ARC情况下,getBlock返回的block会自动copy到堆上,那么block的类型就是NSMallocBlock,可以在example()中继续使用。要在Non-ARC情况下正常运行,那么就应该修改为:

1
2
3
4
5
6
7
TestBlock getBlock() {
  char e = 'E';
  void (^returnedBlock)() = ^{
    printf("%c\n", e);
  };
  return [[returnedBlock copy] autorelease];
}

Block中的循环引用问题

引自:Block的引用循环问题 (ARC & non-ARC)

扯了这么多,回到Block的循环引用问题,由于我们很多行为会导致Block的copy,而当Block被copy时,会对block中用到的对象产生强引用(ARC下)或者引用计数加一(non-ARC下)。 如果遇到这种情况:

1
2
3
4
5
6
7
8
9
@property(nonatomic, readwrite, copy) completionBlock completionBlock;

//========================================
self.completionBlock = ^ {
        if (self.success) {
            self.success(self.responseData);
        }
    }
};

对象有一个Block属性,然而这个Block属性中又引用了对象的其他成员变量,那么就会对这个变量本身产生强应用,那么变量本身和他自己的Block属性就形成了循环引用。在ARC下需要修改成这样:

1
2
3
4
5
6
7
8
9
@property(nonatomic, readwrite, copy) completionBlock completionBlock;

//========================================
__weak typeof(self) weakSelf = self;
self.completionBlock = ^ {
    if (weakSelf.success) {
        weakSelf.success(weakSelf.responseData);
    }
};

也就是生成一个对自身对象的弱引用,如果是倒霉催的项目还需要支持iOS4.3,就用unsafe_unretained替代weak。如果是non-ARC环境下就将weak替换为block即可。non-ARC情况下,block变量的含义是在Block中引入一个新的结构体成员变量指向这个block变量,那么__block typeof(self) weakSelf = self;就表示Block别再对self对象retain啦,这就打破了循环引用。

Block为什么不能捕获C语言数组的值

引自:#iOS# Block为什么不能捕获C语言数组的值

众所周知,在iOS的block中,我们可以截获自动变量,但是为什么如下截获C语言数组的代码却不行:

1
2
3
4
5
const char text[]  = “关注我得博客billwang1990.github.io”;

void (^block)(void) = ^{
     printf(“%c\n”, text[2]);
}

要弄清楚这个问题,就必须明白block是怎样实现的。

简单来说,所谓的“截获自动变量”意味着在执行Block语法时,Block语法表达式所使用的自动变量的值被被保存到Block结构体实例(即Block自身)中。

之所以C数组不能截获,就类似下面的代码:

1
2
3
4
5
6
7
8
9
10
11
void func(char a[10])
{
   char b[10] = a ;
   printf(“%d\n”, b[0]);
}

int main()
{
     char a[10] = {2};
     func(a);
}

这段代码是不能通过编译的,这也解释了为什么Block不能截获C数组。

再分享一篇讲的比较好的文章:iOS中block实现的探究